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A vector space approach for generating the response of linear
multi-degree-of-freedom time-invariant and time-varying dynamic systems using
Hamilton's law of varying action (HLVA) is presented. The boundary (initial)
condition constraints on the temporal-basis-function expansions of the
time-dependent variables has been removed, while preserving HLVA in its
original form. This provides for the broadest choice of basis functions. As a
result of this new approach, it has been demonstrated that the response of
dynamic systems are composed of temporal modes herein denoted as
fundamental-time modes (FTM). Using these fundamental-time-modes, the
general solution for the system response is obtained without reference to
initial conditions or forcing functions. The unique response of the system is
subsequently generated by using the initial conditions and forcing functions
to scale the FTM. This new approach is demonstrated to provide the
exact analytical response, as well as provide accurate numerical response
solutions to a forced-damped-spring}mass system, using admissible
temporal-basis functions (TBF). The numerical response solutions using Gaussian
radial basis functions, are compared to those obtained by using power-series and
third order Hermite polynomials. The new methodology, which will be referred to
as the universal method, in conjunction with Gaussian TBF has permitted use of
transition intervals (ordinarily referred to as time steps) of unprecedented length
(larger than the period of the motion) while still maintaining an accurate response
solution.

( 2000 Academic Press
1. INTRODUCTION

Over the past two decades, Hamilton's law of varying action (HLVA) has been
applied to linear, non-linear, time-invariant and time-varying dynamic systems to
solve the response problem directly, without the use of di!erential equations of
0022-460X/00/151189#31 $35.00/0 ( 2000 Academic Press
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motion [1}11]. HLVA may be expressed as
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where q
r
(t) is the dependent variable representing the displacement (which may or

may not be a generalized co-ordinate) of the rth degree of freedom (d.o.f.) for an
n-d.o.f. system. ¹ is the kinetic energy and d= is the virtual work expression. The
operator d is de"ned in the sense of Bailey [12]. HLVA originally being set forth by
Hamilton [13, 14] in his classic 1834 and 1835 papers presenting a general energy
method in dynamics, had not been used successfully to obtain direct solutions to
initial value problems until its implementation by Bailey [1] beginning in the 1970s.

Until this work, the implementation of HLVA has never been viewed from
a vector space perspective. As a result, previous researchers have been bound to the
idea that the dependent variables must be represented by a basis function
expansion constrained to include the initial conditions [6], or that the use of
unconstrained basis functions require that HLVA be augmented with Lagrange
multipliers [10]. However, neither of these notions is a requirement for
implementing HLVA as demonstrated in this work.

Herein, the implementation of HLVA as interpreted from a vector-space
perspective, provides a solution methodology whereby the dependent variables
may be represented by an expansion of any unconstrained admissible set of basis
functions, while preserving HLVA in its original form (without Lagrange
multipliers). As such, this new methodology will be denoted as the universal
procedure.

All previous methods of implementation require the initial conditions at the
outset in order to solve for the response of linear systems. However, the universal
procedure provides the general system response without specifying the initial
conditions or forcing functions. The unique response can subsequently be
generated using the initial conditions and forcing functions.

The following section will present the universal procedure for implementing
HLVA as provided by the vector-space perspective. Until this work, the
implementation of HLVA has been depicted primarily as a numerical procedure.
In section 2.3, for the "rst time, HLVA (via the universal procedure) will
be demonstrated to provide the exact analytical response to a
forced-damped-spring}mass system. This analytical example will also serve to
provide clarity to the presentation of the universal method.

Section 3 will introduce the use of Gaussian radial basis functions as
temporal-basis functions and will compare the errors in the calculated response
against the errors using power-series and third order Hermite polynomials. Section
3.1 introduces a straightforward method to check the accuracy of the calculated
response, without reference to di!erential equations of motion.

A spin-o! of this vector space perspective, is the discovery that the response of
dynamic systems are composed of fundamental-time modes (FTM). These FTM
are not directly the response of the system itself, but are more basic than the
response and will be discussed in section 4.
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2. VECTOR-SPACE PERSPECTIVE

2.1. TRADITIONAL PROCEDURE

As a prelude to presenting the universal procedure, the traditional procedure for
implementing HLVA will be presented from the vector-space viewpoint for the "rst
time. This will provide a consistent comparison between the traditional and
universal procedures for implementing HLVA. The reader is referred to reference
[1}4, 8, 11, 12] for details and examples of the traditional procedure from
a non-vector-space perspective.

From the vector-space viewpoint, HLVA is an operator that maps the time
integral of the work done by all of the forces (including inertia forces) acting on or
within the system to zero. HLVA operates in the vector space of functions FHLVA,
containing the displacements and their derivatives which satisfy the operator. This
vector space FHLVA is a subspace of the vector space of polynomials P.

According to the representation theorem of linear algebra [15, 16] as applied to
HLVA, the operator HLVA has a matrix representation [P]

T
with respect to

a basis [w(t)]3FHLVA. The matrix [P]
T

is constructed by representing the
dependent variables q (t) in terms of an expansion of admissible basis functions in
time [w(t)]3FHLVA:

q(t)"[w(t)]a or q(t)"[w(q)]A, (2)

where time is usually non-dimensionalized with t"t
f
q, 0)q)1, A

i
"t

f
a
i
, where

we assumed t
0
"0 without loss of generality. The constant coe$cients A constitute

the unknowns of the dynamics problem. These admissible basis functions which
will be denoted more descriptively as temporal-basis functions (TBF), span the
vector space FHLVA, and provide a transformation to the vector space of
co-ordinates Fn, the co-ordinates being the unknown expansion coe$cients A.

A natural basis for the vector space P, and thus FHLVA, is the power series [15]
(this is also evident by Weierstrass's theorem) and have been used successfully as
TBF to represent the time-dependent co-ordinates for discrete and distributed
systems by several authors [1}5, 9, 11], yielding outstanding accuracies. Upon
substituting the various power-series TBF expansions into HLVA, and factoring
out the independent variations of the unknown expansion coe$cients, a system of
linear non-homogeneous equations are obtained

[P]
T
A"b

T
. (3)

By virtue of the form of the power series in time, the "rst and second expansion
coe$cients are recognized as the known initial displacement and initial velocity,
respectively, and are contained in the non-homogeneous term b

T
, along with

possible forcing functions. Consequently, the traditional system of equations (3) are
non-homogeneous whether or not external forces are present. These equations
are denoted as the algebraic equations of motion (AEM), and can be solved for the
constant expansion coe$cients A using a linear matrix equation solver, once
the initial conditions are input into the non-homogeneous term.
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Once the expansion coe$cients A (co-ordinates in Fn) are determined, they may
be reattached to the TBF per equation (2), thus transforming the solution back to
the vector spaceFHLVA, thereby providing a functional form of the system response.
The solutions may be marched in time, by updating the right-hand side of
equations (3) at the beginning of each subsequent transition interval, and by taking
the initial conditions of the current interval as the "nal conditions of the previous
interval.

The traditional procedure previously described is shown graphically in Figure 1,
where the traditional path (procedure) is shown in the vector space Fn.

2.2. UNIVERSAL PROCEDURE

The following will describe a new approach for solving the AEM where all of the
TBF expansion coe$cients are treated as unknowns. As such the AEM take the
forms

[P]A"0 and [P]A"b. (4,a b)

The system is non-homogeneous when external forces (which are not functions of
the displacement and its derivatives) are present (bO0), otherwise the right-hand
side is zero, resulting in the homogeneous system of equations (4a).

2.2.1. Free vibration (homogeneous solution)

With all of the expansion coe$cients A treated as unknowns, the resulting AEM,
equation (4a), for the free vibration of any N d.o.f. dynamic system, requires that
a non-trivial solution vector A reside in the null space of [P]. Moreover A will be
comprised of a linear combination of the null space basis vectors. In order to
determine the null space basis vectors, we consider the eigenvalue problem

[P]E"jE"0, (5)

where for each eigenvalue j
s
, s"1, 2,2, nN, the corresponding eigenvector E

s
consists of n components for each d.o.f. [e1

1
e1
2
2e1

n
e2
1
e2
2
2e2

n
2eN

1
eN
2
2eN

n
]T
s
, where

n is the number of TBF used to represent each d.o.f. [P] is of size nN]nN and will
be denoted henceforth as the fundamental algebraic system matrix. Equation (5) is
valid for the transition interval (0, t

f
). The transition interval chosen depends on

how well the TBF approximate the eigenfunctions of the HLVA operator. This will
be made clear in Section 2.3.

Two initial conditions, q(0) and qR (0), in the free vibration solution space (null
space) in FHLVA are necessary to characterize the trajectory for each d.o.f.
Therefore, the dimension of the null space of FHLVA, for an N d.o.f. system is 2N.

Now, consider the vector space Fn. From linear algebra, the solutions of
[P]E"0 reside in the null space of [P] in Fn. A basis for the null space of [P] is
the set of eigenvectors MEN corresponding to the set of eigenvalues Mj"0N. From
the representation theorem, if there are 2N basis vectors in the null space of FHLVA,
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then there must be 2N basis vectors in the null space of Fn. These basis vectors
MEN3Fn are associated with the set of 2N eigenvalues Mj"0N.

Figure 1 shows, pictorially, the representation theorem as applied to the
traditional and universal procedures associated with HLVA. Here, in the vector
space of co-ordinates Fn, the co-ordinates (expansion coe$cients) A are related to
the modal co-ordinates b through the change of the basis matrix (modal matrix)
[E

1
E

2
2E

2N
].

Hamilton's law of varying action in the form of equation (1) or (5) is exactly
satis"ed and provides the exact response, when the exact eigenfunctions
(corresponding to the zero eigenvalues) of equation (1) are used as the TBF (see
section 2.3). However, for the general application of HLVA, it is not necessary or
practical to obtain the eigenfunctions. Consequently, other trial TBF will be used
which will serve to span the vector space FHLVA, and thus approximate the
response of the system. The degree to which the unique response of a dynamic
system will be approximated is dependent on how completely these trial TBF span
this vector space. These trial TBF may be varied in quantity and character, until
a satisfactory approximation to the response is achieved. The AEM resulting from
the use of these trial TBF will be denoted as the trial AEM and will be represented
as

[P) ]E<"j) E<"0. (6)

where ( ( ) denotes the trial entities. A satisfactory approximation to the response
can be judged by the degree to which 2N eigenvalues of [P) ] approach zero. The
Figure 1. Representation theorem as applied to HLVA.

HLVA(q)"P
tf

t0

(d¹#d=) dt!+
r

L¹
LqR

r

dq
r K
tf

t0

.



1194 H. OG Z AND J. K. RAMSEY
closer the set of resulting eigenvalues are to containing 2N zeros, the better the trial
TBF are at spanning the vector space FHLVA, and the closer the calculated response
will be to the exact solution. When 2N eigenvalues have converged to zero, we then
know that the eigenvectors corresponding to the set Mj"0N form a basis for the
solution space in Fn. At the same time the set of eigenvectors corresponding to the
set of eigenvalues MjO0N form a basis for the range space of [P) ] in Fn (see section
2.2.2). At this point, the trial system matrix [P) ] has converged to the fundamental
algebraic system matrix [P], having selected the "nal choice of TBF. There will
result two zero eigenvalues of [P] per d.o.f. along with their corresponding
eigenvectors E

i
, i"1, 2,2, 2N, which are a basis for the general free vibration

solution (null space) in Fn.
The unique free response for the N d.o.f. system in FHLVA may be expressed by

reattaching the unique set of expansion coe$cients A3Fn to the TBF
[w(q)]3FHLVA,

q (q)"G
q
1
(q)

q
2
(q)

F

q
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(q)H"C
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C D G
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F

ANH , (7)

where the superscript on the expansion coe$cient is the d.o.f. index.
To generate the unique response, the product of the TBF and these unique

expansion coe$cients must satisfy the initial conditions. The expansion coe$cients
can be represented by a linear combination of the eigenvectors (modal vectors) E

i
:
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where the b
i
are the modal co-ordinates, and serve to scale the modal vectors E

i
,

such that the expansion coe$cients A satisfy the initial conditions.
Substituting equation (8) into equation (7) the free response for the N d.o.f.

system may be expressed as
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where

q*
i
(q)"G

q*
1
(q)

q*
2
(q)

F

q*
N
(q)H

i

"C
C

w (q)

C DE
i
, (i"1, 2,2, 2N). (10)

The eigenvectors (modal vectors) in Fn do not have any spatial content, but are in
actuality co-ordinates with respect to the TBF, and may be considered as weights
for each corresponding TBF for the current time interval of the AEM. Once these
modal vectors are attached to the TBF as in equation (10), the resulting products
q*
i
(q) take on a temporal nature. Therefore, this product q*

i
(q) of the TBF and the

modal vectors are denoted as fundamental-time modes (FTM). The quali"er &&time''
is used to indicate that these modes are temporal, and the pre"x &&fundamental'' is
used to emphasize that these modes are the basic building blocks of the system
response.

The FTM q*
i
(q) serve to constitute the displacement and velocity for the N d.o.f.

system as follows:

q (q)"q*
1
(q)b

1
#q*

2
(q)b

2
#2#q*

2N
(q)b

2N
, (11)

q@ (q)"q*@
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2
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2
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2N
(q)b
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. (12)

The free response of a linear system consists of 2N FTM per d.o.f. regardless of the
number or type of TBF used. Equation (11) represents the general solution to the
free vibration problem, no initial conditions having yet been invoked, and where
q*
i
(q) span the solution space of FHLVA, for the N d.o.f. system.
Once the general solution is obtained, the unique response for each d.o.f.

may be generated by solving for the modal co-ordinates b
i
, using the initial

conditions. The modal co-ordinates thus serve to scale or normalize the FTM such
that the initial conditions are satis"ed. The product of the modal co-ordinates and
the FTM are therefore denoted as the normalized-time modes (NTM). The pre"x
&&normalized'' refers to the fact that the FTM were normalized by the modal
co-ordinates.

Putting equations (11) and (12) in matrix form, we have
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where the q*
i
(q) are N-tuples for the N d.o.f. system. The modal co-ordinates b

i
can

be easily solved for, once the initial conditions are substituted into the right-hand
vector in equation (13). Once the b

i
are determined, the response for the current

time interval may be constructed from equation (11).

2.2.2. Forced vibration (particular solution)

Now consider the vector space co-ordinates in Fn again. From linear algebra, the
solutions of [P]A"b reside in the range space of [P] in Fn. For n number of TBF
and N d.o.f. the dimension of [P] is nN]nN. Since the null space has dimension
2N, the rank and nullity theorem of linear algebra conclude that the dimension of
the range space is N(n!2). A basis for the range space of [P] is the N(n!2) set of
eigenvectors MEN corresponding to the N(n!2) set of non-trivial eigenvalues
MjO0N of [P]. As with the free vibration solution, the particular solution in
FHLVA may be expressed as a linear combination of the corresponding FTM for the
range space. There are N(n!2) FTM for the particular solution and they are
de"ned as in the free vibration problem,

q*
iR
"C

C

w(q)

C DE
i
, i"2N#1,2, Nn. (14)

These FTM may then be assembled to produce the general form of the particular
solution for the N d.o.f. system as

qP(q)"q*
2N`1

(q)b
2N`1

#q*
2N`2

(q)b
2N`2

#2#q*
Nn

(q)b
Nn

. (15)

Thus, without specifying the forcing function, we have the general form of the
forced vibration (particular) solution qP (q), for the system.

Once the general form of the forced vibration solution is obtained, the time
response due to a speci"ed forcing function may be determined, by scaling the
range space modal co-ordinates (b

i
)
R

using the speci"c forcing function vector b. To
aid in visualizing this, the general form of the particular solution for all of the
N d.o.f. is presented in matrix form,

qP(q)"C
C

w (q)

C D [E
2N`1

E
2N`2

2 E
Nn

] G
b
2N`1

b
2N`2
F
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"C
C

w (q)

C D [E]
R
b
R
"C

C

w(q)

C DA
R
,
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where A
R
"[A1 A22AN]T and may be obtained by solving the AEM for the

forced vibration problem

[P]A
R
"b. (17)

By virtue of the fact that [P] has zero eigenvalues, it is singular and therefore
cannot be inverted to solve for A

R
. The vector A

R
is composed of range space

eigenvectors and corresponding modal co-ordinates as

A
R
"[E]

R
b
R
. (18)

Therefore

[P]A
R
"[P][E]

R
b
R
"[E]

R C
C

j

CD
R

b
R
"b, (19)

where the identity [P]E
i
"j

i
E

i
has been employed. By left multiplying equation

(19) by [E]T
R

the range space modal co-ordinates b
R
, may be obtained:

b
R
"([E]T

R
[P][E]

R
)~1[E]T

R
b"C

C

j~1

CD
R

([E]T
R
[E]

R
)~1[E]T

R
b, (20)

where the required inverse will always exist.
If the eigenvectors are orthonormal [E]T

R
[E]

R
"[I], equation (20) simpli"es

accordingly and no matrix inversion will be needed. The particular solution may
then be obtained from a combination of equation (14) and (15), or equation (16),
using the range space eigenvectors and modal co-ordinates. Alternatively, A

R
may

be calculated directly by left multiplying equation (20) by [E]
R
, thus providing the

particular solution from equation (16).
The complete solution for the forced vibration problem may be constructed to

represent the displacement and velocity using a linear combination of the 2N FTM
of the homogeneous (null space) solution and the particular (range space) solution
qP(q):

q(q)"q*
1
(q)b

1
#q*

2
(q)b

2
#2#q*

2N
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R
N (21)

" C
C
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N
b
N
#[E]

R
b
R
N.
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q@ (q)"q*@
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Assembling equations (21) and (22) into matrix form we have

C
q*
1
(q) q*

2
(q) 2 q*

2N
(q)

q*@
1

(q) q*@
2

(q) 2 q*@
2N

(q)D G
b
1

b
2
F

b
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H"G

q
1
(q)!qP

1
(q)

q
2
(q)!qP

2
(q)

F

q
N
(q)!qP

N
(q)
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1
(q)!qP{

1
(q)
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2
(q)!qP{

2
(q)

F

q@
N
(q)!qP{

N
(q)
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where q
i
(q) and qP

i
(q) are known at the beginning of each time interval. Once the

modal co-ordinates b
i
are determined, the response of the N d.o.f. system for the

current time interval may be constructed from equation (21).
However, as an alternative solution procedure, A

R
may be computed directly

using the singular-value decomposition (SVD) [15, 17] inverse of [P] denoted as
[P]`:

A
R
"[P]`b"[V][S]~1[U]Tb. (24)

[U], [S], and [V] are calculated by performing an SVD of [P], [U] is a column
orthonormal matrix. The inverse of [S] is merely a diagonal matrix containing the
reciprocals of the singular values p

j
, i.e., 1/p

j
, where 1/p

j
is replaced by 0 if p

j
"0.

[V] is an orthonormal matrix. The columns of [U] corresponding to the non-zero
diagonal elements of [S] are a set of orthonormal basis vectors that span the range
space. The columns of [V] corresponding to the zero diagonal elements of [S] are
an orthonormal basis for the null space. Thus, the SVD of [P] may be used
exclusively to calculate both the free and forced response solutions, since it provides
the null and range space basis vectors.
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The forced vibration (particular) solution for the N d.o.f. system may then be
calculated from equation (16) using A

R
. When using the eigenvalue analysis or the

SVD to calculate the response, the degree to which 2N eigenvalues or singular
values respectively approach zero determines the accuracy provided by the TBF
chosen.

As described for the traditional procedure, the system response may be marched
in time, by updating the AEM at the beginning of each subsequent transition
interval, and by taking the initial conditions of the current transition interval as the
"nal conditions of the previous transition interval. Since the response for each
transition interval is represented by continuous functions via the TBF expansion,
once the solution is generated, the response may be evaluated at any time within the
transition interval.

Without specifying the initial conditions or forcing functions, the universal
procedure provides the general solution to linear dynamics problems via the TBF
and basis vectors. This capability is not provided by alternative numerical
integration schemes which require the initial conditions and speci"c forcing
functions to even begin implementation.

In summary, the complete response of an N d.o.f. time-invariant or time-variant
linear dynamic system may be determined as follows:

(1) Representing the dependent variables with trial TBF, perform an eigenvalue
analysis or SVD of [P< ].

(2) Obtain the fundamental algebraic system matrix [P], by altering the
quantity and/or character of the trial TBF and their associated parameters
including the length of the transition interval (t

0
, t

f
) in equation (1), until 2N

eigenvalues or singular values of [P) ] are as close to zero as deemed necessary
for the particular application. The [P) ] matrix producing the 2N &&zero''
eigenvalues/singular values has then converged to the fundamental algebraic
system matrix [P], also providing the null and range space basis vectors E

i
.

It may be helpful to check the accuracy of the response using HLVA (as
described in Section 3.1) after step (7), if there is any question as to the degree
of nullity of the 2N eigenvalues/singular values.

(3) Generate the FTM of the system using equations (10)
(4) Obtain A

R
from equation (24) using an SVD of [P], or obtain b

R
from

equation (20).
(5) Generate the particular solution using equation (16).
(6) Utilizing the known initial conditions, solve equation (23) for the b

i
.

(7) Calculate the response of the system utilizing the b
i

in equation (21) by
sweeping q from 0 to 1.

(8) Set the "nal values of displacement, velocity and forcing function for the
current transition interval equal to the initial values of the following
transition interval.

(9) If the system parameters are time variant, go to step 2. Otherwise, go to
step 6.

This procedure results in the complete solution, but is also applicable solely to the
free response solution where A

R
, b

R
, qP (q) and qP{(q) are zero.



1200 H. OG Z AND J. K. RAMSEY
2.3. ANALYTICAL EXAMPLE

The universal procedure is applicable to multi-d.o.f. systems. However,
a single-d.o.f. harmonically forced-damped-spring-mass system will be used for this
example, since the exact analytical solution for the response is well known and
available for comparison. This will also provide clarity to the implementation of the
universal procedure.

Upon substituting the kinetic energy and virtual work expressions for a
forced-damped-spring-mass system into equation (1), the following form of HLVA
is obtained:

P
1

0
C
m (q)
t2
f

q@dq@#AF(q)!k (q)q!
c(q)
t
f

q@BdqDdq!
m (q)
t2
f

q@dq K
1

0

"0, (25)

where k, c and m are the spring constant, damping coe$cient and mass,
respectively, which may be time variant as indicated. q(q) is the time-dependent
co-ordinate, and F is the forcing function. ( )@ signi"es di!erentiation with respect
to non-dimensional time q, where t"t

f
q.

With the use of the this procedure, any set of functions that span the vector space
FHLVA may be used as TBF. Suppose from among all of the candidate basis
functions, the eigenfunctions of equation (25) were unknowingly chosen as the TBF
to solve for the response of this system. Indeed, the use of eigenfunctions is not
necessary, but serves to illustrate our procedure with clarity and elegance, and at
the same time demonstrates that HLVA is a fundamental law and not inherently
a numerical/computational procedure. Therefore, let

[w(q)]"[e(~fu~*uJ1~f2) tfq e(~fu`*uJ1~f2) tfq cos(Xt
f
q) sin (Xt

f
q)], (26)

where u, X and f are the natural frequency, forcing frequency and damping ratio
respectively. The time-dependent co-ordinate q (q) takes the following forms:

q(q)"[w(q)]MA
1

A
2

A
3

A
4
NT, (27)

q@(q)"
d
dq

[w(q)]MA
1

A
2

A
3

A
4
NT, (28)

dq(q)"[w(q)]MdA
1

dA
2

dA
3

dA
4
NT, (29)

dq@(q)"
d
dq

[w(q)]MdA
1

dA
2

dA
3

dA
4
NT, (30)
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Upon substituting the above forms of the dependent co-ordinate into equation (25),
with F(q)"F

0
sin(Xt

f
q), the AEM become

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1 G
A

1
A

2
A

3
A

4
H"G

0

0

!F
0
(2fuX)

m[(u2!X2)2#(2fuX)2]

F
0
(u2!X2)

m[(u2!X2)2#(2fuX)2]
H , [P) ]A

R
"b. (31)

The above equation is independent of t
f
. Therefore, if the TBF are chosen to be (by

accident!) the eigenfunctions of HLVA, the AEM become valid for any length of
transition interval! It is shown, therefore, that time marching is not an inherent
requirement of HLVA, but only becomes necessary when the TBF are not the
eigenfunctions, for whatever reason.

2.3.1. Free vibration (homogeneous solution)

For the free vibration problem the right-hand side of equation (31) is zero and the
solution resides in the null space of [P) ] in Fn. The eigenvalues and eigenvectors of
[P) ] are, respectively,

j
1,2,3,4

"0, 0, 1, 1,

E
1
"G

1

0

0

0H , E
2
"G

0

1

0

0H , E
3
"G

0

0

1

0H , E
4
"G

0

0

0

1H .

Since two zero eigenvalues result, [P) ]"[P].
Alternatively, the SVD of [P] is constructed as

[P]"[U][S][V]T

"

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

"

1 0

D D 0 1

E
3

E
4

0 0

D D 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

} E
1
}

} E
2
}

.
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The eigenvalue analysis or SVD gives the bases for the free (homogeneous) and
forced (particular) vibration solutions in Fn. Thus, it is demonstrated that for
a spanning set of basis functions, two zero eigenvalues/singular values per d.o.f. will
result.

The free vibration (homogeneous) solution q (q), may be constructed by
reattaching the expansion coe$cients A to the TBF:

q (q)"[w(q)]MA
i
N"[w(q)]ME

1
b
1
#E

2
b
2
N"q*

1
(q)b

1
#q*

2
(q)b

2

"e~futfq (b
1
e(~*uJ1~f2)tfq#b

2
e(*uJ1~f2)tfq),

(32)

where the coe$cients A are represented by the modal expansion +
i
E
i
b
i
, the modal

co-ordinates b
i
serving to satisfy the initial conditions. This is recognizable as the

general solution to the free vibration problem, valid for any interval of time. The
FTM for this solution are clearly the "rst two elements of the set of TBF. As
previously mentioned, the unique homogeneous solution may be generated via the
modal co-ordinates, once the initial conditions are chosen. The modal co-ordinates
b are determined using equation (13):

C
q*
1
(0)

q*@
1

(0)
q*
2
(0)

q*@
2

(0)DG
b
1

b
2
H"C

1

!ut
f
(f#iJ1!f2)

1

!ut
f
(f!iJ1!f2)DG

b
1

b
2
H

"G
q(0)

q@(0)t
f
H, (33)

where the modal co-ordinates b become

b
1,2

"$iA
fuq(0)#qR (0)

2uJ1!f2 B#
q (0)

2uJ1!f2
. (34)

The "nal formal of the unique homogeneous solution is, therefore,

q (q)"e~futfqC
fuq(0)#qR (0)

uJ1!f2
sin(uJ1!f2t

f
q)

#q(0)cos(uJ1!f2t
f
q)D

(35)

which is valid for any interval of time (0, t
f
), where 0)q)1.

2.3.2. Forced vibration (particular solution)

It may be noted that after multiplying the set of TBF (equation (26)) by the
eigenvectors E

3
and E

4
, the general form of the forced vibration (particular)
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solution is realized. Therefore, E
3

and E
4

do indeed form a basis for the general
forced vibration solution space in Fn. However, this does not directly give A

R
.

Obviously, A
R

may be determined by inspection of equation (31). However, in
general, this may not be so easy. A

R
may be obtained by "rst solving for the range

space modal co-ordinates b
R

using equation (20):

b
R
"C

C

j~1

CD
R

([E
3
E
4
]T
R

[E
3
E

4
]
R
)~1[E

3
E
4
]T
R
b"G

!F
0
(2fuX)

m[(u2!X2)2#(2fuX)2]

F
0
(u2!X2)

m[(u2!X2)2#(2fuX)2]
H ,

(36)

and then computing A
R
:

G
A

1
A

2
A

3
A

4
H"A

R
"[E

3
E
4
]
R
b
R
"G

0

0

!F
0
(2fuX)

m[(u2!X2)2#(2fuX)2]

F
0
(u2!X2)

m[(u2!X2)2#(2fuX)2]
H . (37)

Alternatively, A
R

may be determined directly by employing the singular-value
decomposition inverse of [P] in the following way:

G
A

1
A

2
A

3
A

4
H"A

R
"[P]`b"

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1 G
0

0

!F
0
(2fuX)

m[(u2!X2)2#(2fuX)2]

F
0
(u2!X2)

m[(u2!X2)2#(2fuX)2]
H . (38)

Having obtained A
R
, the forced vibration (particular) solution qp (q) becomes

qp (q)"[w(q)]A
R
"

!F
0
(2fuX)cos(Xt

f
q)#F

0
(u2!X2)sin(Xt

f
q)

m[(u2!X2)2#(2fuX)2]
. (39)
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The complete solution, being the sum of the homogenous (null space) and
particular (range space) solution is

q(q)"q*
1
(q)b

1
#q*

2
(q)b

2
#qp(q)

"e~futfq (b
1
e(~*uJ1~f2)tfq#b

2
e(*uJ1~f2)tfq ) (40)

#

!F
0
(2fuX)cos(Xt

f
q)#F

0
(u2!X2)sin(Xt

f
q)

m[(u2!X2)2#(2fuX)2]
.

As can be seen, this is the complete response of a harmonically
forced-damped-spring-mass system, where the null space modal co-ordinates b

1
and b

2
can be determined from the initial conditions. Utilizing equation (23) we

have

C
1

!ut
f
(f#iJ1!f2)

1

!ut
f
(f!iJ1!f2)D G

b
1

b
2
H

"G
q (0)#

F
0
2fuX

m[(u2!X2)2#(2fuX)2]

qR (0)t
f
!

F
0
(u2!X2)Xt

f
m[(u2!X2)2#(2fuX)2]H ,

(41)

where the null space modal co-ordinates b become

b
1,2

"

q(0)
2

#

F
0
fuX

m[(u2!X2)2#(2fuX)2]

$i G
fuq(0)

2uJ1!f2
#

F
0
f2u2X

uJ1!f2m[(u2!X2)2#(2fuX)2]
(42)

#

qR (0)

2uJ1!f2
!

F
0
(u2!X2)X

2uJ1!f2m[(u2!X2)2#(2fuX)2]H.
The "nal form of the unique complete (homogeneous and particular) solution is,
therefore,

q(q)"e~futfq GAq(0)#
2fuXF

0
m[(u2!X2)2#(2fuX)2]B cos(uJ1!f2t

f
q)

#G
fuq(0)#qR (0)
uJ1!f2

#

F
0
X(2f2u2!(u2!X2))

uJ1!f2m[(u2!X2)2#(2fuX)2]Bsin(uJ1!f2t
f
q)H

#

!2fuXF
0
cos(Xt

f
q)#F

0
(u2!X2)sin(Xt

f
q)

m[(u2!X2)2#(2fuX)2]
, (43)
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which is valid for any transition interval (0, t
f
), where 0)q)1, and can be

compared with the well-known di!erential equation solution.
Hamilton's law of varying action, for the "rst time, has generated the exact

analytical general and unique response solutions of a harmonically
forced-damped-spring-mass system. This example has served to validate the
universal procedure and also demonstrated that HLVA is not inherently
a numerical method. It was also demonstrated that time marching is not necessary
if the chosen TBF happen to be the eigenfunctions.

Many problems will not have closed-form eigenfunctions, so constructing
their approximations using TBF that span FHLVA is the only alternative.
Since in most practical applications, the TBF are not the eigenfunctions of HLVA,
the response can only be accurately approximated over a "nite interval of time.
Therefore, to calculate an accurate response in this case, the global time domain of
interest has traditionally been divided into contiguous intervals of time which are
referred to as transition intervals, where the TBF serve to approximate the response
over these shorter time intervals thereby providing a more accurate approximation
of the system response. However, as pointed out previously, the global time interval
must be traversed by marching in time from one transition interval to the next,
taking the initial conditions of the current transition interval as the "nal conditions
of the previous transition interval.

The length of a transition interval depends on how closely the TBF approximate
the eigenfunctions of HLVA in FHLVA in that interval. The closer the
approximation, the larger the transition interval and vice versa. By default,
eigenfunctions are the optimal set of basis functions for this vector space as
illustrated by the previous analytical example.

It would therefore be advantageous to use TBF that are good global
approximators. In this way, these TBF would be well-suited for emulating the
eigenfunctions of a broad class of dynamic systems. If good global approximators
were used as TBF, they would more than likely yield a high accuracy over a large
transition interval. Indeed, such robust TBF might be desirable for minimizing
computational time.

In recent years, radial basis functions (RBF) have grown in popularity due to
their reputation as good global approximators. If implemented in HLVA, these
characteristics might prove advantageous for increasing the transition interval size,
while maintaining reasonable accuracy. Toward this end, we wish to investigate
their usefulness as TBF, and do so by demonstrating the universal procedure on
a single-d.o.f. forced-damped-spring-mass system.

3. GAUSSIAN RADIAL BASIS FUNCTIONS

While there are several forms of radial basis functions, the form presently chosen
for utilization as TBF has a Gaussian distribution,

e~K (q~qi)2, (44)
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where q
i
are the centers located at various non-dimensional times with respect to

a non-dimensional transition interval from 0)q)1. K is inversely proportional
to the spread of the RBF with respect to the center located at q

i
.

Theorem 1.3 of reference [18] states that any continuous function can be
approximated using a su$cient number of Gaussian RBF. Thus, the Gaussian RBF
form a spanning set for the vector space P and are thus admissible basis functions
for use in HLVA. For the Gaussian RBF, the accuracy of approximation is
governed by the quantity and location of centers, as well as the spread of each basis
function.

If the task at hand is to interpolate a known function, several techniques
including the method of least squares may be used to optimally locate the centers.
However, since the system response is not known a priori, arbitrary placement of
centers is appropriate and is employed with success. Equispaced centers with large
spreads seem to work best for the applications studied herein.

From here on, the Gaussian RBF will be referred to as Gaussian TBF, to empha-
size their temporal characteristics. Using the Gaussian TBF, the dependent variable
and its variations for the single-d.o.f. forced-damped-spring-mass system are

q(q)"
n
+
i~1

A
i
e~K (q2~2qqi`q2i )"[w (q)]MA

i
N, (45)

q@ (q)"
n
+
i/1

2K(q
i
!q)A

i
e~K (q2~2qqi`q2i )"

d
dq

[w(q)]MA
i
N, (46)

dq(q)"
n
+
j/1

e~K (q2~2qqj`q2j ) dA
j
, (47)

dq@ (q)"
n
+
j/1

2K (q
j
!q)A

i
e~K (q2~2qqj`q2j )dA

j
. (48)

It should be noted at this point that neither the initial displacement nor the initial
velocity are represented by any one explicit coe$cient in the above TBF expansions
(all coe$cients are unknown).

Substitution of equations (45)}(48) into equation (25), results in the matrix
equation

P
1

0
C4K2(q

i
!q) (q

j
!q)!

k (q)t2
f

m(q)

!2K(q
j
!q)

c(q)t
f

m(q) D e~K (2q2~2qqi~2qqj`q2i `q2j ) dq

!2K (q
j
!1)e~K (2~2qi~2qj`q2i `q2j )#2Kq

j
e~K (q2i `q2j )

MAN

(49)

"G P
1

0

!

F(q)t2
f

m(q)
e~K (q2~2qqi`q2i ) dqH, i, j"1, 2,2, n,

[P) ]A"0, b
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The response of the system is determined by using the procedures described in
sections 2.2.1. and 2.2.2. All of the calculations were performed using MATLAB.
The elements of the trial fundamental algebraic system matrix [P) ] and b matrices
were computed using 10-point Gauss}Legendre integration [17].

3.1. ACCURACY

HLVA is a fundamental law [12, 19] and is not a numerical/computational
procedure. However, in most practical applications, numerical procedure are used
to solve the AEM resulting from HLVA. In as much as HLVA is a fundamental
law, the check on the accuracy of the approximate solution cannot be an
assessment or evaluation of HLVA but an evaluation of the methodology and TBF
used therein.

In many of the previous papers on HLVA by other authors, the accuracy of the
approximate solution was determined by substituting the calculated displacement
and its derivatives into the di!erential equations (DE) of the system (obtainable by
integrating HLVA by parts with respect to time, and then recovering the DE from
the integrand), and observing how well the DE were satis"ed. Although this is
a legitimate approach for checking accuracy, it seems rather unnecessary in that the
DE have no more utility to o!er than HLVA from which they can be obtained.
Utilizing the following procedure results in a consistent method whereby the
solution and its accuracy are ascertained using HLVA solely, without reference to
the DE of the system.

Once the system response is obtained, the dependent variables are now known
functions of time. The chain rule may now be utilized in the d operations (as de"ned
in the sense of Bailey [12]) as follows

d (2)"
L (2)

LqR
dqR #

L(2)
Lq

dq, (50)

d(2)"
L(2)

LqR
LqR
Lt

dt#
L(2)

Lq
Lq
Lt

dt, (51)

where dt does not signify a variation of time, but an increment of actual time along
the actual path.

When the response is sought, its time dependence is not yet known and thus the
d operation as indicated by equation (50) stops short of implementing the chain rule
with respect to time (an operation which renders interpretation of d as the &&virtual''
change operator). However, once the solution is obtained, the response is a known
function of time, and therefore the chain rule in the d operation may be carried out
sIf one would like to view d as the traditional virtual change operator in which time is frozen and in
which dq and dqR are arbitrary variations, one by de"nition, is free to choose them as equivalent to
actual variations along the path of motion over a small &&actual'' interval of time. Therefore, in the
sense of Bailey, the operations described following equation (50) can also be fully justi"ed from this
perspective. Note that if the solution is unknown, one can only go as far as equation (50) in which case
the d operation becomes identical to the traditional &&virtual variation'' operation.
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as shown in equation (51) (an operation which renders the d operation as marching
along the actual path). Hence, it is this versatile interpretation of the d operation
that makes it possible for the construction of the following accuracy test.

Upon utilization of the d operator in HLVA as shown in equation (51) above,
equation (1) for a forced-damped-spring-mass system becomes

P
tf

t0

(MqK!Kq!CqR #F)qR dt!MqR 2 K
tf

t0

"0, (52)

where dt has been divided out. The accuracy of the response may now be
determined by the degree to which the calculated displacement and its derivatives
satisfy equation (52). Thus, HLVA generates a solution and provides an accuracy
check by using the &&virtual'' and &&actual'' interpretations of the d operator
respectively, without any reference to di!erential equations.

3.2. COMPARISON TO POWER SERIES TBF

The bene"ts of using Gaussian TBF as an alternative to power series were
evaluated by comparing the peak errors in the approximate response solutions of
four di!erent forced-damped-spring-mass systems. The parameters of the four
systems are shown in Tables 1 and 2. These four systems were chosen to evaluate
any improvement the Gaussian TBF might provide over the use of power series
TBF in approximating the exact response, for a system with a stable, unstable and
a neutrally stable oscillation, as well as a system with external forcing. Although the
power series could have been employed using the traditional procedure, they were
implemented using the universal procedure, providing a consistent comparison
with the Gaussian TBF. In all cases the SVD was used exclusively to calculate the
response.

The peak errors in the calculated response, over an elapsed time of 70 seconds,
for three unforced systems are presented in Table 1. Since the calculated response
for each transition interval is a known function of time via the TBF expansion, it is
possible to determine the response at any time within each transition interval. The
errors in Table 1 resulting from the use of power series and Gaussian TBF were
evaluated at time steps of 0)005, 0)125, and 0)0375 s for transition interval sizes of
Dt"0)1, 2)5, and 3)333 s respectively. Since the period is n seconds long,
a transition interval of 3)333 s is slightly larger than one complete period.

In addition to the peak errors from equation (52) (which is all that is necessary to
check accuracy), the peak error in the DE as well as in the displacement alone, is
included in Table 1 to satisfy the skeptic. Many di!erent combinations of Gaussian
TBF were investigated to arrive at a combination that yielded accurate solutions to
the forced-damped-spring-mass problems studied herein. It was noted that the
accuracy is highly dependent on the position of the centers and on the exponent
K (spread). The Gaussian TBF centers and spread are listed in Table 1. Ten power
series and 10 Gaussian TBF were used in each case. The Gaussian TBF for the
largest transition interval are shown in Figure 2.
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TABLE 2

Peak errors over an elapsed time of 70 s

4qK#0)5qR #16q"1#t#sin t
q (0)"0)25, qR (0)"1

Peak error Peak Peak error
in di!erential displacement in HLVA
equation error equation (52)

Dq!q
exact

D

Gaussian TBF*, Dt"0)1
8)17699e-04 3)50595e-08 1)55401e-09

Power series TBF, Dt"0)1
5)75624e-04 1)09491e-07 1)67690e-08

*Mcenters: !0)25, 0)0, 0)5, 1)0, 1)25N, K"0)009.

Figure 2. Gaussian temporal basis functions. Centers: M!1)0, !0)666, !0)333, 0)0,2, 2)0N.
Spread: K"1)31.
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The error in the DE resulting from the use of the approximate displacement and
its derivatives, is a combination of the errors from the displacement, velocity and
acceleration approximations. As such, this error is much larger than the error in
displacement alone. This fact is illustrated in Table 1. On the other hand, equation
(52), being an integral equation, tends to smooth out or diminish the errors in the
approximate displacement and its derivatives. Thus, smaller tolerances are required
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when using equation (52) to check the error as opposed to larger tolerances
appropriate when using the di!erential equations themselves.

The power series TBF displays outstanding results for the smaller transition
intervals, providing better accuracies than the Gaussian TBF. For the "xed number
of basis functions, the accuracies provided by the power series TBF decreased as the
size of the transition interval increased. Although the Gaussian TBF displays the
same trend, they are able to provide better accuracies than the power series TBF at
the larger transition intervals.

The peak errors in the calculated response of a forced system over an elapsed
time of 70 s were also investigated. The system parameters and peak errors in the
calculated response are presented in Table 2. Five Gaussian and "ve power series
TBF were used with 700 transition intervals of 0)1 s each. Here, the Gaussian TBF
provided a more accurate response.

3.3. COMPARISON WITH HERMITE INTERPOLATION POLYNOMIALS

Baruch and Ri! [7] used third order Hermite interpolation polynomials as their
basis functions, to solve initial value problems using HLVA. They presented results
for several example problems. In particular, the results from two example problems
presented in Table 1 and 3 of reference [7] were compared against the solutions
generated using Gaussian TBF. The comparison between the approximate
displacement and velocity generated using Gaussian TBF and the third order
Hermite polynomials, as well as the exact solution is presented in Table 3, along
with the system parameters. The Gaussian TBF centers were located at
non-dimensional temporal locations of !0)25, 0, 0)5, 1)0 and 1)25 s with K"0)009.
Comparisons were made at 1 and 20 s elapsed time. The transition interval size in
all cases were 0)0625 s. The SVD was used exclusively to calculate the response.

Typographical errors occurring in Table 3 of reference [7] for the exact solution
were corrected herein. As can be seen from Table 3, the Gaussian TBF yielded a more
accurate solution than the Hermite polynomials for both cases of damping ratio.

4. TIME MODES

As previously described, the calculated response is composed of FTM along with
their modal co-ordinates. The product of a FTM and its modal co-ordinate
generates a NTM.

For time-invariant systems with transition intervals of "xed length, the
fundamental algebraic system matrix [P] and its eigenvectors, do not change from
transition interval to transition interval. The FTM being composed of these
eigenvectors remain unchanged as well. Thus, one set of FTM over one transition
interval is all that is necessary to generate the response for all subsequent intervals.
This is possible, due to the fact that the modal co-ordinates are scaled such that the
boundary conditions at each transition interval are satis"ed. For a time-variant
system, where the [P] matrix and its eigenvectors change from one interval to the
next, the FTM are additionally functions of the transition interval as well.
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Referring to Figure 3, we observe the FTM resulting from the use of Gaussian
TBF for the undamped and unforced system of Table 1, with Dt"3)333 s (a single
transition interval which is larger than the period of the system). Here it can be seen
that the FTM are the same for each transition interval. Moreover, they are
discontinuous at the boundaries of each interval.

Figure 4 presents the null space modal co-ordinates b
1,2

for each transition
interval. The modal co-ordinate distribution shown ensured that the initial
conditions of each transition interval were matched to the "nal conditions of the
previous transition interval. The modal co-ordinates are constant for each
transition interval.

The modal co-ordinates may also be viewed as FTM participation factors. For
example, Figure 4 presents the modal co-ordinates, or FTM participation factors,
for the undamped and unforced system of Table 1. It can be concluded from this
"gure that near 25 s, b

1
'b

2
, and therefore, the "rst FTM acts more like

a displacement mode than the second FTM. However, near 40 s, b
2
'b

1
, and

therefore, the second FTM acts more like a displacement mode than the "rst FTM.
This exchange between the "rst and second FTM can be seen in what appears to be
&&beats'' in the NTM as shown in Figure 5.

The NTM are also discontinuous. Adding these NTM together results in the
response shown at the bottom of Figure 5. A similar set of plots are shown in
Figures 6}8, where power series TBF were used to solve the undamped and
unforced system of Table 1.
Figure 3. Fundamental-time modes for 4qK#16q"0, using Gaussian TBF: (1) FTM q*
1
; (b) FTM

q*
2
. q (0)"0)25, qR (0)"1, Dt"3)333 s.



Figure 4. Modal co-ordinates for 4qK#16q"0, using Gaussian TBF: (a) modal co-ordinate b
1
;

(b) modal co-ordinate b
2
. q(0)"0)25, qR (0)"1, Dt"3.333 s.

Figure 5. Normalized-time modes and response for 4qK#16q"0, using Gaussian TBF: (a) NTM
q*
1
b
1
; (b) NTM q*

2
b
2
; (c) response q. q(0)"0)25, qR (0)"1, Dt"3)333 s.
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Figure 6. Fundamental-time modes for 4qK#16q"0, using power series TBF: (a) FTM q*
1
;

(b) FTM q*
2
. q(0)"0)25, qR (0)"1, Dt"3)333 s.

Figure 7. Modal co-ordinates for 4qK#16q"0, using power series TBF: (a) modal co-ordinate b
1
;

(b) modal co-ordinate b
2
. q (0)"0)25, qR (0)"1, Dt"3)333 s.
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Figure 8. Normalized-time modes and response for 4qK#16q"0, using power series TBF:
(a) NTM q*

1
b
1
; (b) NTM q*

2
b
2
; (c) response q. q(0)"0)25, qR (0)"1, Dt"3)333 s.
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5. CONCLUSIONS

A vector space approach for generating the response of linear systems using
HLVA has been presented. This approach, denoted as the universal procedure,
removes all boundary (initial) condition constraints on the TBF expansion while
preserving HLVA in its original form. This procedure provides for the broadest
choice of admissible TBF.

As a result of this new approach, it has been demonstrated that the free and
forced response of linear dynamic systems are composed of FTM along with their
corresponding modal co-ordinates. These FTM serve to form the general free
(homogeneous) and forced vibration (particular) response solutions, without
specifying the initial conditions or forcing functions respectively. The unique
response solutions is subsequently obtained by scaling the modal co-ordinates
using the initial conditions and forcing functions. The modal co-ordinates thus
serve to normalize the FTM such that the initial conditions are satis"ed. The full
implication of the fundamental and normalized time modes have yet to be fully
realized.

Hamilton's law of varying action has been demonstrated to generate an
approximate response solution and assess the accuracy without reference to
di!erential equations, by using the &&virtual' and &&actual'' interpretations of the
d operator respectively.

The power series being a natural basis for the vector space of polynomials, are
a wise choice for TBF and yield outstanding results. However, for the same number
of basis functions, the Gaussian TBF o!er higher accuracies than the power series
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at the larger transition intervals. With the use of the universal procedure in
conjunction with Gaussian TBF, transition intervals (time steps) of unprecedented
length (larger than the period of motion) are now possible, while maintaining
reasonably accurate solutions.
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APPENDIX A: NOMENCLATURE

a column vector of temporal basis function expansion coe$cients, Ma
i
N

a
i

ith temporal basis function expansion coe$cient
A column vector of temporal basis function expansion coe$cients, MA

i
N
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A
i

ith temporal basis function expansion coe$cient, a
i
ti
fA

R
[E]

R
b
RAEM algebraic equations of motion

b right-hand column vector of external forcing functions
b
T

right-hand column vector of initial conditions and external forcing functions
c damping
DE di!erential equation
d.o.f. degree of freedom
E modal vector3Fn

[E]
N

modal matrix of null space eigenvectors, [E
1
2E

2N
]

[E]
R

modal matrix of range space eigenvectors, [E
2N`1

2E
Nn

]
F external forcing function
FTM fundamental-time mode
FHLVA vector space of functions that satisfy HLVA, LP
Fn vector space of co-ordinates
HLVA Hamilton's law of varying action
i, j summation, matrix and vector indices
k sti!ness
K exponent governing spread of Gaussian TBF
m mass
n total number of TBFs
N total number of degrees of freedom
NTM normalized-time mode
[P] fundamental algebraic system matrix
[P]

T
fundamental algebraic system matrix for traditional procedure

P vector space of polynomials
q column vector (N-tuple) of co-ordinates q

r
3FHLVA

q
0

initial displacement
q*
i

ith FTM containing components Mq*
r
N
i
, for each d.o.f. 1)i)2N ()Nn for

forced systems)
qp column vector (N-tuple) of co-ordinates qp

r
, for particular solution, 3FHLVA

q
r

co-ordinate of rth d.o.f., 3FHLVA, 1)r)N
qP
r

co-ordinate of rth d.o.f. for particular solution, 3FHLVA, 1)r)N
(q*

r
)
i

rth d.o.f. component of the ith FTM3FHLVA, 1)i)2N ()Nn for forced
systems)

r index of d.o.f., 1)r)N
RBF radial basis function
s index of eigenvalue, j
[S] diagonal matrix of singular values
SVD singular-value decomposition
t time
t
f

"nal time of interval
t
0

initial time of interval
¹ kinetic energy
TBF temporal-basis function
[U] column orthonormal matrix containing basis vectors that span the range space,

3Fn

[V] orthonormal matrix containing basis vectors that span the null space, 3Fn

<
0

initial velocity
d= virtual work expression
b modal co-ordinate, 3Fn

b
N

modal co-ordinates corresponding to null space eigenvectors, [b
1
2b

2N
]T3Fn

b
R

modal co-ordinates corresponding to range space eigenvectors,
[b

2N`1
2b

Nn
]T3Fn
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d operator de"ned in reference [12]
Dt length of time of transition interval
f damping ratio
j eigenvalue of [P]
p singular value
q non-dimensional time
q
i,j

temporal center of Gaussian TBF
w row vector of TBF, 3FHLVA

u natural frequency
X forcing frequency
( )@ derivative with respect to non-dimensional time
( 0 ) derivative with respect to real time
(
)
) trial entities

( )
N

entities in null space, 3Fn

( )
R

entities in range space, 3Fn
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